

Fire Resistance

Build Bloc Customer Guidance BBCG/01/V1

Fire resistance of concrete blocks is a critical factor in construction, especially in buildings where fire safety is a priority. The fire resistance of a concrete block wall depends on several factors, including the **thickness** of the wall, the **density** of the blocks, the **type of aggregates** used, and the presence of additional layers such as plaster or fireproof coatings.

Due to their fire resistance, our concrete blocks have an A1 fire rating under BS EN 13501-1:2018. This means that they are classed as non-combustible and pay no contribution towards a fire. The A1 rating of concrete blocks was determined by the European Commission.

Factors Affecting Fire Resistance of Concrete Block Walls

- 1. Wall Thickness: Generally, thicker walls provide greater fire resistance.
- 2. **Type of Concrete Block**: Blocks made with different types of aggregate (such as lightweight or dense aggregate) have different fire-resistant properties.
- 3. **Density**: Higher-density blocks tend to offer better fire resistance.
- 4. **Surface Finishes**: Fire-resistance ratings can be increased with the addition of finishes like plaster or fire-resistant boards.

General Fire Resistance Ratings for Concrete Block Walls

Below is a **table** that gives approximate fire-resistance ratings for walls of varying thicknesses, based on their construction and type of aggregate:

Block Type	Wall Thickness (mm)					
	100	100	140	140	215	215
	Bare	F1/F2	Bare	F1/F2	Bare	F1/F2
Ultra/Lightweight (Hours)	1.5	2.5	2	3	4	4
Medium-Dense (Hours)	2	3	3	4	4	4
Dense (Hours)	3	4	4	4	4	4

Finishing

F1 - Plaster or Render: Applying a 12 mm (1/2 inch) thick plaster or render can increase the fire resistance rating of the wall by up to 1 hour.

F2 - Gypsum Plasterboard: Installing fire-rated gypsum board on the interior face can also enhance fire resistance by **1-2 hours** depending on the board type.

Notes:

- Lightweight aggregate concrete blocks (e.g., pumice, expanded clay) tend to provide lower fire resistance compared to medium-weight or dense aggregate blocks.
- The above table assumes a non-load-bearing wall. For load-bearing walls, fire resistance may be slightly reduced due to the additional structural demands during a fire.
- Fire resistance ratings can be improved with plastering or applying fireresistant boards to the wall surface.

Codes and Standards

In many countries, building codes specify minimum fire resistance ratings for different types of buildings and wall constructions. For example:

• **BS EN 1996-1-2** (Eurocode 6): Offers guidance on masonry structures, including fire resistance.

How to Improve Fire Resistance

- 1. **Increase Wall Thickness**: The simplest way to enhance fire resistance.
- 2. **Add Surface Finishes**: Use fire-resistant plaster, intumescent coatings, or fire-rated boards.
- 3. **Choose Higher Density Blocks**: Dense aggregate blocks typically offer higher fire resistance.
- 4. **Use Reinforced or Cavity Walls**: Adding reinforcements or creating cavity walls improves structural integrity during a fire.

